
 
 

 

MASTERARBEIT / MASTER’S THESIS 

Titel der Masterarbeit / Title of the Master‘s Thesis 

„Bike Sharing Atlas: Visual Analysis of Bike-Sharing 
Networks and Urban Commuting Patterns Worldwide“ 

 

verfasst von / submitted by 

Michael Oppermann, BSc 
 

angestrebter akademischer Grad / in partial fulfilment 
 of the requirements for the degree of 

Diplom-Ingenieur (Dipl.-Ing.) 
 

Wien, 2017 / Vienna 2017  

Studienkennzahl lt. Studienblatt / 
degree programme code as it appears on 
the student record sheet: 

A 066 926 

Studienrichtung  lt. Studienblatt / 
degree programme as it appears on 
the student record sheet: 

Masterstudium Wirtschaftsinformatik 

Betreut von / Supervisor: 
 
Mitbetreut von / Co-Supervisor: 
 

Dipl.-Inf. Michael Sedlmair, PhD 
 
Univ.-Prof. Torsten Möller, PhD 

  
 





Declaration of Authorship

I hereby declare that I have written this Master’s Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 4th May, 2017
Michael Oppermann

i





Acknowledgements

First, I want to thank Michael Sedlmair and Torsten Möller for their support and
encouragement. I am extremely grateful for the opportunity to have had them as
supervisors and mentors. Many discussions and their excellent feedback sparked my
interest in doing further research in this area.

I also want to thank all members of the Visualization and Data Analysis research group
for great discussions and their valuable feedback.

Furthermore, I would like to thank my family and all my friends for their patience and
support.

iii





Publication & Media

Journal Paper
Portions of this thesis have been submitted as a paper for publication in the Special Issue
on Visualization of the International Journal of Transportation in April 2017. Thus, any
use of “we” in this thesis refers to Michael Oppermann, Michael Sedlmair, and Torsten
Möller.

Presentation
Michael Oppermann will present this work under the title ’A Global Perspective on Bike-
Sharing Networks And Urban Commuting Patterns’ at the 8th International Visualization
in Transportation Symposium in Washington D.C. in July 2017.

Media
The Bike Sharing Atlas has attracted public interest and was also featured in the media:

1. Futurezone technology news, ’Bike Sharing Atlas zeigt, wo die Mieträder stehen’ [1]
2. uni:view, ’Mit dem Radl von Stadt zu Stadt’ [2]

v





Kurzfassung

In dieser Arbeit präsentieren wir die interaktive, web-basierte Visualisierung Bike Sharing
Atlas (bikesharingatlas.org). Unser entwickeltes System erlaubt die explorative Daten-
analyse von mehr als 468 Bike-Sharing Netzwerken weltweit. Über einen Zeitraum von 17
Monaten haben wir Live-Daten hunderter Bike-Sharing Netzwerke aufgezeichnet, mit
weiteren Informationen angereichert und eine umfassende Datenbank erstellt. Mehrere
verknüpfte Ansichten und eine neue Interaktionstechnik für Liniendiagramme erlauben
Benutzern die Identifizierung von Kapazitätsengpässen bei Stationen, Vergleiche von
Netzwerkcharakteristiken, oder beispielsweise die Analyse von Pendlerströmen in hunder-
ten Städten. Das übergeordnete Ziel dieser Arbeit ist, zu illustrieren welches Potenzial
die visuelle Analyse für die Exploration von verteilten, heterogenen Daten von Smart
Cities bietet. Basierend auf Gesprächen und Evaluierungen mit Personen verschiedener
Zielgruppen, präsentieren wir vier exemplarische Einsatzmöglichkeiten. Diese Szenarien
demonstrieren das Potenzial unseres visuellen Ansatzes für ein besseres Verständnis von
Bike-Sharing und urbanen Pendlerbewegungen in einem globalen Kontext.
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Abstract

In this paper, we introduce an interactive visualization system, bikesharingatlas.org,
that supports the explorative data analysis of more than 468 bike-sharing networks
worldwide. Being increasingly digitized, these networks nowadays produce data that can
reveal interesting insights, not only into patterns of bicycle usage but also underlying
spatio-temporal dynamics of a city. We recorded this data from several hundred networks
worldwide, over a period of 17 months, and made it publicly accessible through a
common web platform. The application leverages a multi-coordinated view approach and
innovative interaction techniques can help, for instance, to expose capacity bottlenecks,
commuting patterns, and other network characteristics. Our broader goal is to illustrate
how visual analysis can be used for exploring distributed, heterogeneous data from smart
cities. Based on our collaboration with different target users, we present a set of four
usage scenarios that show the potential of our approach to understanding bike-sharing
and urban commuting behaviors worldwide.
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CHAPTER 1
Introduction

1.1 Motivation
The majority of the world’s population is living in urban areas, and this proportion
continues to grow. An increase in efficiency is needed for cities to function, and sustainable
infrastructures will be essential to accommodate larger numbers of people. As digitization
has become an integral part of our life, massive amounts of data from a variety of sources
are generated continuously in cities worldwide. Leveraging this data intelligently offers
great potential towards smarter and more efficient cities.
Although having these immense datasets at our fingertips, we often lag behind in
supporting people to intelligently leverage the huge amount of data that is produced
daily. A city planner might want to identify and better understand commuting patterns
in order to develop more robust and cohesive transportation infrastructures. A local
politician wants to make information more accessible and communicate decisions in a clear
and understandable way. A journalist might want to write an article about sustainable
mobility and substantiate various hypotheses with real data. A sociologist wants to study
local effects of job density and residential segregation on society, or wants to perform
other data-intensive tasks like cross-country comparisons of urbanization.
However, currently, most of the data comes in machine-readable form only and hence is
hard to access for people without sophisticated computational and statistical skills.
In this thesis, our goal is to illustrate how interactive visualization can help to open the
data that is produced in smart cities to a wider audience. We believe that interactive
visualization can help us to engage users, and to interactively explore and understand
collected data from smart city sensors, in order to make life more comfortable, safer and
sustainable.
Towards this goal, we take public bike-sharing systems as an example and show how
visualization can help to better leverage the data produced by these systems. Bike-
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1. Introduction

sharing systems have been established as permanent components in urban passenger
transport since 1996 [3]. Users can rent a bicycle at any bike-sharing station, drive to
their destination and then return it again at a nearby station. Due to the fast and easy
access and the high station density in many cities, bike-sharing is becoming more and
more popular for inner-city transportation. Being increasingly digitized, these systems
nowadays produce data that can reveal interesting insights, not only into patterns of
bicycle usage, but also underlying spatio-temporal dynamics of a city, as Froehlich et al.
[4] and Wood et al. [5] pointed out. We gathered this data from several hundred cities
worldwide and made it publicly accessible through a common web platform. For this
purpose, we have implemented an interactive visualization system with multiple linked
views that allow an exploratory data analysis for users with a wide range of expertise.

1.2 Methodological Approach
In November 2014 we conducted a brainstorming session with the operator of a bike-
sharing network in Vienna. We discussed several challenges they encounter during setup
and operation of a cost-oriented bike-sharing network and also talked about utilizing
visual analysis. This meeting and the provided datasets motivated us to implement a first
prototype that supports the interactive exploration and analysis of different aspects of an
individual bike-sharing network. Follow-up conversations via email and in person showed
us that the responsible people gathered a wealth of experience during the past decade of
operation. While our tool can support and accelerate various analysis processes, it did
not reveal entirely new insights. Interestingly, although bike-sharing is a global trend
with opportunities and challenges that occur not just locally, we could observe that the
operator and existing visualization tools for other cities take a rather narrow view. With
this knowledge in mind, we concluded the pre-project stage and started to develop our
idea of a global approach to understanding smart city data.
Our subsequent methodological design and approach is composed of three main steps:
(1) data acquisition and preprocessing, (2) implementation, and (3) evaluation.
As a first step, we recorded continually, over a period of 17 months, distributed data from
several hundred bike-sharing networks worldwide. We aggregated the data, combined
it with other data sources and derived characteristic network metrics. In the course
of an iterative design process we built a visualization tool with a variety of viewing
options to offer multiple different perspectives on the data. Various design considerations
were inspired and strongly shaped by our interactions with different target user groups:
operators of a bike-sharing network, urban sociology researchers, public authorities, city
planners, and the general public.
To illustrate the value of our proposed visualization approach, we provide four different
usage scenarios:

1. how visualizing long-term recorded data can help to better understand commuting
patterns in a city,
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1.3. Contributions

2. how the combination with other data sources can reveal interesting insights,

3. how our approach allows to compare systems world-wide through a shared global
perspective,

4. and how the general public can benefit from recording and visualizing this data.

While our focus is on bike-sharing networks, we believe that—with the proliferation
of globalization and mega cities—such data-driven and visual approaches will become
increasingly important for other aspects of open urban data as well.

Each step of our methodological approach is described in the Chapters 3, 4 and 5. Finally,
in Chapter 6, we reflect on the implications of our approach and discuss opportunities
for other smart city initiatives.

1.3 Contributions
In summary, our main contributions are:

• We recorded and make openly available a repository of open bike-sharing data from
380 different cities over a period of 17 months and additionally data from 88 cities
over a period of 4 months.

• We designed an online interactive visualization that makes the data accessible to
users with a wide range of expertise.

• We describe a set of four usage scenarios to illustrate the benefits of our approach
for different target users.
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CHAPTER 2
Background and Related Work

2.1 Bike Sharing
Bike-sharing networks—established as permanent components in urban passenger trans-
port since 1996 [3]—are increasingly pervading and influencing the way we commute in
densely populated areas worldwide. New systems are popping up and existing ones are
extended continuously. A bike-sharing network, by our definition, has a certain number
of stations and often thousands of bikes circulating in the network. Users can rent a
bicycle at any station, drive to their destination and return it at a station nearby. Every
station is composed of docking spaces and has, therefore, a finite capacity. The number
of bikes in each station, we call it fill level, is highly dynamic and also a significant factor
for the functioning of a system. There is an increasing number of public bike sharing
systems that do not rely on these docking stations and instead work with GPS-equipped
bicycles that can be dropped off at any major crossroad or in a geo-fenced area. The
renting and returning procedures work with smart cards or apps. Given the still rather
small number of these dockless systems and their different characteristics, the main focus
in this thesis lies on the data produced by the first-mentioned, traditional bike-sharing
systems.

Correctly deployed, these systems can offer a wide range of benefits. Commuters do
not have to buy their own bicycles in the first place and, second, they do not have
to bother with security, maintenance, and shelter. These systems benefit not only the
users but also the city as a whole. They can relieve pressure from overcrowded routes
in the public transportation system and can act as a complement to traditional urban
transport options. For example, to cover the last mile between the subway station and
the workplace. The installation and maintenance are relatively cost-efficient compared to
other transportation options, thus, bike sharing programs provide a good opportunity to
promote sustainable mobility and to reduce car usage in the city centers.
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2. Background and Related Work

Despite the advantages offered by these networks, the initial setup and the operation can
lead to many challenges and uncertainties for the responsible authorities. The primary
objective, shared between all operators and city authorities, is a self-balanced bike-sharing
network. In this scenario, the number of available bikes and free docks are distributed
in a way that users can rent bicycles wherever and whenever they want. In practice,
stations get full or empty and operators have to redistribute bikes manually between
the stations in order to guarantee the functioning of a network. This process can be
very complex and waste enormous resources. There are numerous papers addressing
this rebalancing issue, for example, by suggesting more efficient routes for the manual
redistribution or a more sophisticated positioning of docking stations (see Section 2.2).
In this context, questions arise, such as: How many stations and docking spaces are
needed? What average distance between stations is adequate? What location generates
usage throughout the day?

Being increasingly digitized, the systems produce large amounts of data that can reveal
interesting insights and can help to answer these types of questions. Subsequently, this
can result in an improvement of bike-sharing programs in the future. By collecting data
that is produced by these systems continuously (see Chapter 3) and by making it publicly
accessible and explorable in an interactive visualization system (see Chapter 4) we want
to make a further step in this direction and show the potential of a data-driven approach
to understanding bike-sharing networks and smart cities in general.

2.2 Related Work

Bike-sharing data has been used in different contexts before. Here, we review this previous
work with the goal to contextualize our work and to provide the interested reader with
further pointers into the visualization and data analysis literature.

2.2.1 Statistical Analyses of Bike Sharing Networks

The most prominent analyses of bike-sharing data this far have been statistical analyses.
The goal of these analyses were, for instance, to help system operators to improve the
location of stations [6, 7], or re-balance bikes between stations [8, 9, 10]. Lin et al.
proposed a model to determine the optimal number of stations to cover a specific area
and to ensure that the network can handle the traffic effectively [11]. Guenther et al.
developed models to forecast future bicycle migration trends in order to predict station fill
levels [12] and Borgnat et al. used statistical modeling to analyze dynamics of movements
within Lyon’s bike-sharing scheme [13]. While these approaches look for an algorithmic
solution for a clearly defined task, our goal is different in that we want to make the data
accessible, visible, and explorable to a wide range of potential users.
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2.2.2 Visual Analysis of Bike Sharing Networks
Towards our goal, to open the data and to make it accessible to a wider audience, we took
the approach of interactive visualization, which is well-known to support such exploratory
endeavors [14, 15]. It provides an essential way to support the user in a hypothesis
generation and decision-making process.

There exist already some efforts that focus on the visual analysis of individual bike-
sharing networks. Studying the spatial distribution of journeys and peak-time behaviors in
London [5, 16], analyzing the system dynamics over a 10-month long period in New York
City [17] or investigating the effect of weather and calendar events on the spatio-temporal
dynamics of Brisbane’s bike-sharing network [18]. In addition to these papers, data
scientists and students created numerous web applications and visualizations that also
deal with the visual analysis of single bike-sharing networks. Wellington created a Voronoi
tessellation of New York City to analyze bike-share riders [19]. Alberts mapped Citi Bike
trips that were recorded over a two-day period [20] in New York City. Bostonography
provides a tool to interactively explore the impact of demographic and weather factors
on bike-share ridership in Boston [21]. Chiraphadhanakul implemented a well-designed
interface for the exploration of bike-share data in the San Francisco Bay Area [22] and
Jacobsen published an online tool that allows the comparison of Divvy riders versus
public transit riders regarding travel time [23].

In terms of analyzing multiple cities, Austwick et al. [24] used statistics and visualization
techniques to compare five different cities. Bargar et al. [25] proposed an application
for comparing usage patterns between different bike-sharing programs from up to three
different cities and Nagel et al. [26] exhibited, in a public gallery space, several visualiza-
tions for casually analyzing three different bike-sharing networks. Most closely related to
our approach are O’Brien [27] and Meddin et al. [28], who both used map-based tools
to show the locations of bike-sharing networks worldwide. Although these tools provide
an overview of systems, they are based on very homogeneous data sources and do not
take a long-term and contextual perspective, as we do. O’Brien et al. [29] proposed a
classification of 38 systems based on spatio-temporal characteristics and demonstrated
thereby the opportunities of a higher-level view. In contrast to this work, which is a static
analysis and a discussion of various insights, our goal was an interactive visualization
tool that allows for dynamic and interactive exploration of the underlying data.

2.2.3 Visual Analysis of Urban Data
In a broader context, there are several approaches that use other data sources in con-
junction with visualizations to solve problems that are abstractly similar to the one of
bike-sharing networks. These works use other smart city sensors, such as mobile phone
data [30], public transport data [31] or social media data [30] to explore opportunities
that arise from this type of data-driven analysis for smart cities. Ferreira et al. [32] used
taxi trip data and Miranda et al. [33] utilized meta-data of Flickr images to visually
explore and understand behavioral patterns in New York City. With these tools we share
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2. Background and Related Work

the goal to make the data accessible and to provide different levels of analysis. However,
all these approaches take a local perspective on one city and are often limited to a specific
target group, while our goal is to investigate how to expand such approaches to a more
global level and for a broad range of users.
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CHAPTER 3
Data Acquisition and

Preprocessing

We gathered data from several hundred cities worldwide over a period of 17 months
and combined it with other types of information, such as elevation profiles and hourly
weather records. In the following, we more closely describe this underlying data and the
preprocessing steps, before we introduce the interactive visualization system build upon
it in the next section.

3.1 Bike Sharing Data
Many operators make their collected data available to the public and contribute to various
open data initiatives. A few cities share detailed historical data about completed trips
(see Table 3.2) but the majority provide only information about current station fill levels.
In our application we put the focus on this type of information, to cover as many cities
as possible.

We started collecting data from 380 networks at the beginning and added new networks
continuously. Our database is now composed of data from 468 networks in 45 different
countries, with more than 21.500 stations. We gathered the data through api.citybik.es [34]
or directly from the websites of the bike-sharing operators. Over a period of 17 months
and for 380 networks we have logged the number of available bikes and empty docks
for each station in a 15 min interval (see Table 3.2). Additionally, we further recorded
this information from 88 other networks over a 4-month period. The usage fees and
membership plans, for networks with more than 100 stations, were collected manually
from the websites.

1 The data is not publicly available but the operator provided the information for our research project.
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3. Data Acquisition and Preprocessing

Network Region Producer Stations
1 Santander Cycles London, United Kingdom PBSC 774
2 Citi Bike New York City, United States PBSC 511
3 Divvy Chicago, United States PBSC 475
4 Ecobici Mexico City, Mexico Clear Channel 444
5 Capital Bikeshare Washington DC, United States PBSC 357
6 Nice Ride Minnesota Minneapolis, United States PBSC 190
7 Hubway Boston, United States PBSC 155
8 Bay Area Bike Share San Francisco Bay Area, United States Motivate 70
3 Citybike 1 Vienna, Austria JCDecaux 200

Table 3.1: Bike-sharing systems that share detailed information about completed trips

internal_id station_id network slots empty_slots free_bikes timestamp
108535 30184e9e... citybike-wien 27 16 11 2017-03-25 18:45:02
108536 a2599132... citybike-wien 15 0 15 2017-03-25 18:45:02
108537 f5e847ac... citybike-wien 26 19 7 2017-03-25 18:45:02
108538 0ab8a7d9... opole-bike 15 7 8 2017-03-25 19:01:11
...

Table 3.2: Excerpt of station timestamps that are recorded every 15 min

We examined the data quality periodically to analyze the trustiness of the used APIs.
In general, all station fill-levels are published in real-time and are consistent with the
information on the websites of the individual bike-sharing networks. Due to the large
number of networks and involved companies, it happens occasionally that no or only
incomplete data is sent. These problems occur more likely with small systems and because
of the long-time recording and the data aggregation, they have only little effect on the
overall results. The complete absence of networks on our web application constitutes a
larger problem. Many operators either do not publish station fill levels or they restrict
the access for automatic processing. For example, the current version supports only a
few systems from Asia, due to access limitations [34]. The implementation of special
scrapers for individual networks is beyond the scope of this thesis but our tool provides
interfaces to easily connect additional networks in the future.

3.2 External Data Sources
From the very beginning, our goal was to combine the bike-sharing data with external
data sources and to investigate its benefits. Therefore, as a first step, we enhanced the
platform with hourly weather records, elevation profiles and population statistics for all
468 networks.

Restrictions in accessing historical weather data made it necessary to implement a logging
system that stores live weather records in our database. Since December 15, 2015 we use
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3.3. Preprocessing

the API service of OpenWeatherMap 2 to access current weather data for all cities in our
database. In our web application we are using only temperature data at the moment but
we additionally save the textual weather description (e.g. overcast clouds, light rain, mist,
etc.), humidity, and windspeed, that can be used for further analyses and extensions of
the system.

The elevation profiles (altitude of each station) were loaded once by using the Google Maps
Elevation API 3. This information allows users, for example, to investigate the impact
of elevation differences on the fill levels. Additionally, we are using the Google Maps
Geocoding API 4 for converting addresses into geographic coordinates (latitude/longitude),
and Mapbox 5 as a tile provider and for calculating routes.

Our interviews with various experts revealed a great interest in the integration of
demographic data. Although there are many open data libraries worldwide, it is still
a very complicated and time-consuming procedure to collect this type of information,
especially on a city level. For this reason, we have restricted our search to city populations.
We implemented a separate tool that can search for cities on Google and automatically
scrapes the data from the population widget on top of the page. Missing records were
added manually with data from Wikipedia. This information is only used as a rough
indicator for filtering and clustering purposes and, therefore, possible uncertainties can
be tolerated.

3.3 Preprocessing
In total, we collected more than 830 million fill levels, that offer a large potential for
various analysis and prediction tasks, while also confronting us with additional processing
challenges. For this reason, we integrated multiple preprocessing steps to break down the
database into smaller chunks that can be loaded during runtime. Our Python scripts
regularly parse the table with all timestamps, aggregate the data and export the result
as small CSV files. Currently, we distinguish three modes of aggregating station fill
levels. We calculate the average utilization of every station for the whole time period,
for all weekdays or only for weekends. This process can be easily extended, for instance,
to analyze seasonal patterns. Similarly, the daily average temperature is computed by
aggregating hourly weather records.

3.4 Network Characteristics
High-level network metrics were also generated in advance. In addition to the number
of stations per network, their elevation profiles, and the average number of docks per

2 https://openweathermap.org/API
3 https://developers.google.com/maps/documentation/elevation
4 https://developers.google.com/maps/documentation/javascript/geocoding
5 https://mapbox.com
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3. Data Acquisition and Preprocessing

station, we calculated the following characteristics for filter, ranking and comparison
purposes:
Average nearest neighbor distance. For all the networks we created a distance-matrix
to calculate the average nearest neighbor distance. The distances between the stations
(latitude/longitude pairs) were computed by using the Haversine formula.
Average number of stations within a 2 km radius reach. Evaluations with the bike-sharing
operator revealed that the averaging of distances can lead to inaccuracies. Therefore, we
added another metric that is also used by the operator for internal analyses. The 2 km
radius around a station represents very well the distance that users are willing to drive
on average.
Network activity. The missing data about completed trips (e.g. origin and destination)
from most of the registered systems makes it difficult to quantitatively assess bike-sharing
dynamics. The mere aggregation of fill levels does not give us any insights about temporal
changes. For instance, how many trips were taken during the week compared to the
weekend? We defined a new metric, the network activity, by counting the number of fill
level changes for every station and normalized it to the network size. Due to the 15 min
interval in our data retrieval, there is some natural uncertainty of this straight-forward
measure for larger networks [35].
Maximum elevation difference between the highest and lowest station. This metric can be
used to filter networks with large elevation differences to further investigate its impact.
Table 3.3 shows ten networks with the largest elevation drops and Figure 3.6 gives
an overview of elevation differences between the highest and lowest stations in all our
networks.

3.5 Statistics
In this section we present various statistics and visualizations that illustrate the charac-
teristics as well as commonalities and differences between the bike-sharing networks in
our database.
Figure 3.1 shows an overview of the largest bike-sharing networks in our database. These
networks are not confined to a specific region and thus exemplify the global trend toward
this type of sustainable urban mobility solution. Due to access limitations and frequent
fluctuations in recent years this ranking does not reflect the largest networks that currently
exist.
As shown in Figure 3.2 (logarithmic scale), networks with more than 200 stations may
be considered as outliers. The majority of bike-sharing networks consists of less than 50
stations and the median is at 12.
The scatter plot in Figure 3.3 shows the relationship between the number of stations per
network and the average nearest neighbor distance between stations. We can observe
that larger networks have a much higher density and neighboring stations can be reached

12
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Figure 3.1: The 15 largest bike-sharing networks in our database

Figure 3.2: Histogram showing the distribution of number of stations per network

much faster. The average nearest neighbor distance is between 200 m and 900 m in most
networks (see Figure 3.3) and the average number of stations within a 2 km radius reach
is generally rather low, due to small networks sizes (see Figure 3.5). In the Velib network
in Paris users can reach 120 stations on average within a 2 km reach. The walking
distances to and from these stations in the city center have been reduced to a minimum.
Regarding station density, Paris is followed by Barcelona, Mexico City and London.

Figure 3.7 (logarithmic scale) shows the population distribution of all cities in our
database. Similar to the number of stations, the majority of networks is again at the
lower and of the spectrum. Most of the bike-sharing networks are installed in cities with
less than 500.000 inhabitants while there are also networks in mega cities such as London,
Mexico City or New York City.

13
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Figure 3.3: Number of stations vs. average nearest neighbor distance

Figure 3.4: Histogram showing the distribution of the average nearest neighbor distance
between bike-sharing stations

Figure 3.5: Histogram showing the distribution of the average number of stations within
a 2 km radius reach

14



3.5. Statistics

Network Region Stations Min. [m] Max. [m] Drop [m]
1 Parkinbici Ischitella, Italy 12 1.42 566.16 564.74
2 Montana Valli dell’Ossola Santa Maria Maggiore, Italy 6 271.01 830.81 559.79
3 Bike Santiago Santiago, Chile 148 481.01 855.28 374.27
4 Terni Terni, Italy 13 117.80 447.79 329.99
5 Enna Enna, Italy 5 644.54 943.86 299.32
6 Youbike New Taipei, Taiwan 343 1.18 267.38 266.20
7 e.motion Rovereto, Italy 14 170.10 435.44 265.34
8 Mountain Rides Ketchum / Sun Valley, USA 49 1610.01 1872.20 262.19
9 Call-A-Bike Stuttgart Stuttgart, Germany 45 220.64 482.13 261.49

10 Leihradl Traisen-Gölsental, Austria 8 328.52 583.01 254.50

Table 3.3: Ten networks with the largest elevation drop between the highest and lowest
station

Figure 3.6: Histogram of the elevation difference between the highest and lowest station
in each network

Figure 3.7: Histogram showing the distribution of population throughout the bike-sharing
cities
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CHAPTER 4
Bike Sharing Atlas

We have developed an interactive visualization system (bikesharingatlas.org) to help users
with a wide range of expertise to understand and intelligently leverage data that is
produced by public bike-sharing systems worldwide. This section contains multiple
screenshots of the web tool and a video in the supplemental material provides further
details on user interactions.

In the following, we give an overview of the system and subsequently we present four
selected usage scenarios. In this context, we also describe in detail primary visual and
interaction design choices we made during the implementation process.

4.1 System Overview
Global view: Initially, the homepage of the web-platform presents an interactive map
showing the geographical locations of all bike-sharing networks. To ease getting started,
we also display example cities including the city of the user’s current location, and those
that are particularly interesting because of the available data (see Figure 4.1). Two
separate pages provide further high-level overviews of all networks, as shown in Figure 4.2
and 4.6. A small multiples view (Figure 4.2-b), for instance, provides a first impression of
the size and density of the networks by visualizing them as individual vector maps. Sort
functions, range sliders, and histograms allow users to explore and compare hundreds of
networks in an interactive way.

Local view: The user can then select a network of a particular city and go one level
deeper revealing detailed information about this network (and city). A tab navigation
and multiple views provide different perspectives on the selected network and support
the user in the exploration process. The currently available detail views include: (1)
Interactive map with current fill levels of the network, as shown in Figure 4.4; (2) Route
planner, Figure 5.5-c, and in Figure 4.5: (3) Fill level analyzer with historical data; (4)
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4. Bike Sharing Atlas

Figure 4.1: Screenshot of the homepage of bikesharingatlas.org

Time series chart with the network activity and the superimposed temperature profile; (5)
Other information about the network and the city, such as bike-sharing pricing, detailed
information on trips (if available), or additional weather and elevation data.

Multiple entry points, a search function, and a clear navigation structure provide an easy
way to get from a global to a local view and vice versa. Moreover, we followed the idea
of suggested interactivity [36], in the form of little preview videos and tooltips, to guide
first-time users through the visualization system.

4.2 Implementation

Our system is implemented as a web-based tool that runs in every modern web browser
and that adapts flexible to different desktop monitors. While we have used Python
extensively for data-preprocessing, the actual web-interface is primarily based on HTML,
CSS and JavaScript.

The collected and aggregated data is stored in a MySQL database and partly in small
CSV files that can be loaded asynchronously as needed. We have decided to use MySQL
because it is robust and it provides a straightforward way for representing our data
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4.2. Implementation

(a) Interactive filterable map
provides a geographical
overview of all networks

(b) Small multiples are good
indicators of the size, structure
and density of networks

(c) Table view with detailed
statistical data of all networks

Figure 4.2: Screenshots of different overview components of the tool

model, and despite the fact that we would gain minor performance enhancements with
NoSQL databases, such as MongoDB 1.

The REST API, the backend of the application, that serves as an interface between the
MySQL database and the frontend is written in PHP and uses the micro-framework
FlightPHP 2. Most of the computations are performed in the preprocessing steps due
to the vast amount of data (see Section 3.3 for more details). Remaining calculations
that can be done during runtime are computed on the server. The frontend receives the
prepared data and builds the graphical user interface. All the visualizations, interaction
mechanisms, and event listeners are implemented in JavaScript. The advantage of
this client-sever architecture is that we can operate multiple clients and different user
interfaces with the same backend system. In addition to the Bike Sharing Atlas, we could
implement, for example, a mobile app that builds on the same data and that can be
easily connected to the server through our REST API.

Furthermore, we use the library d3.js 3 for visualizations, and leaflet.js 4 for integrating
interactive maps. In contrast to other visualization libraries, d3.js is flexible enough
to build unique visualizations with new interaction techniques while at the same time
we don’t have to rewrite basic functionalities from scratch. Leaflet is an open source
JavaScript library for interactive web-based maps. The resulting mobile-friendly maps
are similar those created by Google Maps but the library also allows us to integrate
tile layers and plugins from many third-party providers. In our system, we are using
Mapbox 5 as a mapping service for the image tiles and for calculating the routes in the
bike-sharing route planner.

1 https://mongodb.com
2 http://flightphp.com
3 https://d3js.org
4 http://leafletjs.com
5 https://mapbox.com
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4. Bike Sharing Atlas

4.3 Visualization and Interaction Design Choices
The general goal of this tool is to help users with a wide range of expertise to understand
and intelligently leverage data produced by a public bike-sharing system. To do so, we
identified and followed several requirements in our design process that we further explain
in the following sections.

4.3.1 Overviews and details

Conceptually, our user interface follows Shneiderman‘s venerable information-seeking
mantra (“overview first, zoom and filter, details on demand”) [37]. This concept—one
of the main principles of visualization designers nowadays—describes how data should
be presented to users to be as effective as possible. Multiple views in our application
show information about the entire dataset to provide an overview. For example, all the
networks are displayed in an interactive map without showing any details but giving the
user the ability to understand the data as a whole. Once the user can see the big picture,
zooming, sorting, and filter mechanisms help to focus on a particular section of the data.
Finally, once the user finds an interesting subset to look at, we provide further details on
demand. In our visualization system, these details are usually different perspectives on
individual bike-sharing networks (e.g. live station states, fill level analyzer, route planner,
etc.). With the overview-detail design choice, we present the data in different levels
of detail without visually overwhelming the user. Figure 4.3 shows the implemented
components of the system.

Figure 4.3: Overview and detail components.

4.3.2 Allow analysis-interested users to discover

While our platform is meant to be accessible to everyone and easy to use, at the same
time we sought to encourage users to explore the data and foster serendipitous discoveries.
Towards this goal, we designed and implemented multiple visualizations. For instance,
the fill level analyzer that can be used to explore station states throughout the day
(local perspective) or the network characteristics page that supports the investigation of
bike-sharing systems on a global scale.
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Figure 4.4: Current overview of station fill levels in Paris, France. Tooltips help to predict
the availability of bikes and empty docks at certain times during the day.

Fill Level Analyzer

By recording and aggregating station fill levels over a period of 17 months we get an
accurate picture of the daily average utilization of each station in a network. The fill level
analyzer, shown in Figure 4.5, with its multiple coordinated views is based on this data
and provides a new approach to identify capacity bottlenecks and commuting behaviors
in bike-sharing systems. The multi-series line chart is the core element and shows, for a
selected city, the average fill levels (y-axis) during the day (x-axis). Each line represents
a station. Due to the different numbers of docking spaces per station, the fill levels are
normalized. This contrasts from the work from O’Brien et al. [29] where all station fill
levels are aggregated to get a single line. In that case, during the averaging process
important information gets lost and it is impossible to expose critical stations that are
mostly full or empty. In our proposed system all stations are separated and the user
can switch between different modes to explore, for example, fill levels only for weekends
or weekdays. Additionally there are two other perspectives: an elevation profile of all
stations and an interactive map for providing the geographic context.

Dynamic linking and brushing [38], an interactive visualization technique that connects
multiple views, leads to a holistic understanding of the city dynamics. As shown in
Figure 4.5-a, the user can draw a line—a hypothetical profile—on top of the multi-series
line chart and our algorithm automatically selects similar stations. At the end of the
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4. Bike Sharing Atlas

Figure 4.5: The fill level analyzer view exposes bike-sharing commuting behaviors in
London, U.K.

drawn line a slider is displayed and allows the user to specify how many lines she wants
to select (default is 20% of the lines). The selected stations are not only highlighted in
the line chart (brushing), but also in all other views (linking). This approach allows the
user to quickly analyze complex patterns that are distributed over multiple views.

In addition to the multi-series line chart, the lasso tool (freehand selection) can be used
within the map to select multiple networks. Thus it is also possible to investigate specific
geographical regions (see Figure Figure 5.2-b).

Network Characteristics

To illustrate the global scale of our data, we implemented another multi-coordinated view
dashboard that allows users to interactively explore bike-sharing systems globally (see
Figure 4.6). Several frequency charts (or strip plots), with thin, vertical lines representing
individual networks, show the distribution of networks along a set of selected dimensions,
such as population, network activity, or the number of reachable stations (see Section 3.4
for more details). Some of the charts contain very similar data points with just a few
outliers while others are more equally distributed over the whole range. We have used
transparency to make these distributions clearly visible. Areas with a high density of
data points show up darker than areas with a low density. The color coding of selected
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Figure 4.6: Frequency charts linked with a map view allow users to interactively explore
and compare network characteristics

networks ensures a strong pop-out effect [39]. Similar to the fill level analyzer, users can
draw lines on top of these charts to select certain ranges of interest. Again leveraging
the linking and brushing approach, the selection is highlighted on all other dimensions,
as well as in the corresponding map. A small histogram to the right of each frequency
chart serves as an additional indicator of the distribution and can be used to narrow
down the range. This concept is called focus+context and we have used it multiples
times in our interactive visualization system [14]. Although, we have used different chart
types and visual encodings it always follows the same idea: detailed information about
a selected subset (focus) is embedded in a view that also contains an overview of the
entire data structure (context). The information of interest is in the foreground (e.g.
frequency chart) while also preserving a global view at reduced detail (e.g. histogram).
Vice versa, and in addition to the frequency charts, upon filtering a specific geographical
region (lasso selection), the received values are highlighted in the frequency charts and
displayed in the table on the right. Particularly when selecting multiple networks at the
same time, the sortable table can be used to further analyze these attributes.

The multi-coordinated views, on this page, are based on a small JSON configuration file
that specifies their appearance. In case we want to add more network characteristics in
the future we can easily append another field to the JSON object and the view will be
updated automatically.
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4. Bike Sharing Atlas

The supplemental video illustrates our linking and brushing approach and Section 5.2
discusses usage scenarios associated with the fill level analyzer and network characteristics.

4.3.3 Ease of use
In order to make the tool usable for a broad audience, we cannot have a steep learning
curve as is the case for many expert visualization and data analysis tools. Our tool
should be self-explanatory and provide easy entry points. We thus sought to consistently
use easy to understand visual encodings, specifically as the visualization literacy of the
general public is known to be low [40]. While earlier iterations of the tool included more
complex encodings, such as a heatmap or cluster views, we eventually settled with an
approach that is solely based on maps and simple statistical graphics. Instead of complex
visual encodings, we seek to allow for exploratory discoveries through rich, yet easy to
understand linking and brushing interactions. The whole user interface is characterized
by its minimalist, function-oriented design. The color palette and fonts were chosen with
the aim to enhance the readability and the contrasts, and on the basis of common design
principles [39]. We also followed the idea of suggested interactivity [36], in the form
of little preview videos and tooltips, to guide first-time users through the visualization
system.

4.3.4 Modular design
As exploratory data analysis is an inherently ill-defined process, we designed the system
to be open and flexible toward future changes. We thus opted for a modular design that
can be easily extended with data from new bike-sharing systems or other sources, as well
as with different views onto this data. We achieved this flexibility by implementing a
client-server architecture that strictly separates the data model from the graphical user
interface. Additional data records can be added at any time and will be visible in the
frontend without any changes. Most of the D3 visualizations are encapsulated as modules
that can be loaded and reused at various places in the web application. The layout of the
Bike Sharing Atlas provides only a rough framework and ensures a uniform appearance.
New detail views on a single network can be added to the tab navigation and further
pages presenting other information can be easily integrated in the primary navigation.
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CHAPTER 5
Evaluation

5.1 Expert Interviews
Over the course of the last two years, we evaluated and discussed our approach with the
following target groups:

• Bike-sharing operator
• City planners
• Public authorities
• Urban sociology researchers
• General public users

Overall, we interviewed 15 participants in 13 single or group sessions. The interviews
were conducted at the University of Vienna or in the office rooms of the respective
participants. The procedure varied considerably depending on the interviewees’ input
and their interests. In general, all the interviews started with a demonstration of the
prototype followed by questions and an open discussion. The meetings with the general
public users followed a thinking-aloud approach [41]. Instead of presenting the tool, the
users were asked to perform a few tasks on their own and to talk to me while working
on them. This technique allowed me to observe interactions and thought processes of
non-expert users. Therefore, think aloud is a commonly used method in the field of
human-computer interaction to identify usability issues. Below, we present further details
regarding our interviewed target groups.

5.1.1 Bike-Sharing Operator
Since the start of the project in November 2014 the operator of the local bike-sharing
network in Vienna accompanied and supported us. The system in Vienna is one of the
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5. Evaluation

first of its kind and went through several stages of development. The responsible persons
have built up a wealth of experience in the past years. For example, to improve the daily
rebalancing operations or to evaluate new locations for docking stations. Although some
methods are rather outdated and cumbersome, the company uses various analysis tools
and visualizations since the early days. Joint brainstorming sessions, the provision of
historical data at the beginning and their reports on the challenges in the setup and
operation of a cost-efficient bike-sharing system significantly influenced the evolution
of our project. After an initial brainstorming session, we had two further extensive
interviews and multiple e-mail exchanges to evaluate our prototypes with these domain
experts. In the first follow-up interview, we presented and discussed CitbikeVis, an
interactive visualization to analyze station bottlenecks and other aspects of a single bike
sharing system (for more details, see Chapter 6). In the second one, we proposed the
Bike Sharing Atlas and explored together different potentials of our global approach on
leveraging bike-sharing data (see Section 5.2).

5.1.2 City Planners

Bike-sharing has changed the urban landscape and commuting behaviors in many cities
around the world and thus attracted a lot of interest of city planners and developers. For
that reason, we were pleased to hear the opinions of these experts on our project. Despite
the dense network of city public transport in Vienna, bike-sharing has been established
as a cheap and comfortable alternative. The interview with these experts revealed that
comparisons with other cities play an important role. For instance, analyses of other
networks revealed that the station density in Vienna is rather low and there are efforts
to increase it in the future. In this context, the interviewees were interested in additional
features that automatically recommend and analyze new locations and extensions of
docking stations. While our system currently works on a macro level with high-level
characteristics, an extension or a separate tool could also incorporate the micro level and
support these kinds of tasks.

5.1.3 Public Authorities

Local politicians often act as an intermediary between city planners and bike-sharing
operators. They are involved in strategic decisions and have to manage the city budget.
The interview in May 2016 showed us that they are also highly interested in multi-city
comparisons. Furthermore, they appreciate our data-driven and visual approach to
understanding city dynamics. This enables them to get an unbiased perspective and to
gain various insights without being an expert. Due to the tight budget situation, the
bike-sharing expansion in Vienna is currently paused and the interviewees did not see a
direct practical benefit at the time of our meeting. In case of an analysis or extension
of the current network in the future, they would be very interested in using our web
application.
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5.1.4 Researchers in Urban Sociology
During the development of the first prototype, we recognized that the Bike Sharing
Atlas enables us to identify various interesting behaviors and commuting patterns.
After conducting two interviews with sociologists the implications and opportunities of
our approach became more evident. Although our system is primarily built on bike-
sharing data, the feedback from these researchers illustrated potential use cases for other
disciplines as well. Combined with other datasets, such as job density statistics, our
system can help to study local effects of residential segregation or to perform cross-city
comparisons. It also emerged from the discussion that it is not conducive to overload
the web application with many different datasets from external sources. Instead, the
integration of an upload functionality for custom datasets (e.g. CSV or GeoJSON files)
could further enhance the value of the visualization system.

5.1.5 General Public
In the course of the project, we conducted six think-aloud studies with general public
users – individuals who do not have an explicit domain knowledge. We asked them to
execute several tasks: a) check the live station fill levels of a specific city; b) use the
bike-sharing route planner; d) try the fill-level-analyzer and c) explore other networks.
Following the think-aloud technique, they should speak aloud all thoughts that came
to their mind. The feedback received in the interactions with this target group was
very positive and has shown the added value, especially for those traveling or moving
to new cities. The user interface and the aesthetics of the whole system were positively
emphasized. However, some concerns were raised that the web application is primarily
interesting for bike-sharing enthusiasts.

5.2 Usage Scenarios
The insights we gained together with these people informed many design considerations
and shaped the final implementation. The usage scenarios below are based on them and
are meant to illustrate the potential of our interactive visualization tool.

5.2.1 Usage Scenario: Commuting Patterns
Besides bike-sharing operators, that can use the fill level analyzer, shown in Section 4.3.2,
to analyze capacity bottlenecks, such as frequent outages, city planners and public
authorities can use the visualization system also to identify and communicate urban
commuting behaviors. For example, stations in the city center of London get full during
the day and empty through the night, as shown in Figure 4.5. This phenomenon is
observable in many cities worldwide as illustrated in Figure 5.1. Milan and New York
City show very similar behaviors. People from the outskirts are commuting to downtown
areas, such as Fifth Avenue in New York or Piazza Duomo in Milan, in the morning and
return in the evening. Mexico City’s pattern is a bit more faceted and shows multiple
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geographical hotspots. Although our two city planner interviewees have hypothesized a
considerable separation of residential and commercial spaces in certain cities, our tool
exposed visible evidence for this behavior.
The small thumbnails in the middle column of each view show how commuting patterns
differ during the week from those on the weekend. Fill levels on Saturdays and Sundays
have usually a much flatter profile. In the interactive visualization system, users can
click on one of the thumbnails to show it in the main view enlarged.
Barcelona and other Spanish cities show this characteristic morning commute curve too
but in the afternoon it becomes vague. We can imagine that this effect might stem from
the different working patterns in Spain with a longer lunch break and longer working
hours in the evening [42]. This assumption could be further investigated by sociology
researchers with the aid of our visualization system.
Other cities, such as Marseille or Vienna, are instead characterized by a mixed-use
development, without such a clear commuting pattern in filling levels (i.e., mostly
balanced fill levels).

5.2.2 Usage Scenario: Combining with Additional Data
Elevation Profiles

Multiple guided brainstorming sessions with a bike-sharing operator revealed that eleva-
tion differences between stations are essential factors for the cost-efficient functioning of
a system. Stations at higher altitudes tend to be empty more frequently because users
are usually more downhill-oriented. The bikes must be re-balanced manually by the
operator. By combining the historical bike-sharing records with elevation profiles, the
implemented visualization system also supports a closer investigation of this question. As
part of the fill level analyzer, described in the previous usage scenario, we have integrated
an elevation profile of all stations, which is also connected via linking and brushing to all
other views. Instead, of a u-shaped commuting pattern such as in Figure 5.1-a or 5.1-b,
average filling levels in Vienna, for example, remain mostly constant throughout the
day but show clear evidence of fewer available bikes at higher altitudes. The screenshot
in Figure 5.2 shows this scenario visually. Stations are highlighted in the multi-series
line-chart, in the map, and shown as filled white circles in the elevation profile on the left
side. Despite the relatively small elevation difference of 78m between the highest and
lowest station its impact must be considered when planning new stations in Vienna.
The maximum elevation difference between the highest and lowest station serves as one
of our network characteristics and can be also used to analyze elevation patterns on a
global scale.

Weather Records

Besides the elevation profiles, we further enhanced our database with hourly weather
records for all cities. In previous works weather has been found a substantial factor in

28



5.2. Usage Scenarios

Figure 5.1: Station fill levels visualized as multi-series line charts serve as indicators of
commuting behaviors worldwide. Small thumbnails in the middle column of each view
show how patterns differ during the week from those on the weekend. Users can click on
one of the thumbnails to show it in the main view enlarged. Stations can be selected
either in the line chart or in the map view and are highlighted respectively. 29
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(a) Fill level analyzer shows mostly balanced fill levels
in Vienna but provides evidence of fewer available bikes
at higher altitudes

(b) Lasso selection tool can be
used to filter stations based on a
geographical region

Figure 5.2: Analyzing station fill levels of Vienna’s bike-sharing network

bike sharing demand [43, 44]. In addition to cross-correlation between the temperature
and the network activity, which we compute for easy global comparisons, we also added
an additional time series view showing this data visually. Vienna, for example, has a
distinctive pattern and a particularly strong relationship between the network activity and
the temperature, as shown in Figure 5.3. The two white cuts in April and August were
caused by server issues and do not represent the actual network activity. Visualization
is also good in quickly revealing such anomalies [45]. Analyzing the impact of weather
conditions on bike-sharing can help to improve rebalancing operations and the planning
of new systems in the future [44].

Demographic Information

Generally, we opted for a modular design that can be easily extended with data from
other sources, as well as with different views onto this data. Especially future work in
urban sociology would benefit from an integration of additional context information, such
as demographic developments (workplace density, gross domestic product etc).

For instance, we integrated a choropleth map showing Vienna’s population density 1

in an early stage prototype, as illustrated in Figure 5.4. Choropleth maps display
geographical regions, such as subdistricts in our case, that are colored in relation to the
underlying data values. This visualization type is very popular to present quantitative
values across geographical regions but if not used correctly it can be misleading and
distort the interpretation. Instead of visualizing absolute values we have used ratios (or
derived values) to also consider the varying sizes of the areas. However, currently it is

1 Data source:
https://github.com/anitagraser/Webmapping-Sandbox/tree/gh-pages/data
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Figure 5.3: Time series showing the network activity (gray area) and the temperature
(line) in Vienna

very difficult to get demographic data on this level of detail from many cities worldwide.
Therefore, this feature is not included in the current version of bikesharingatlas.org but
in the future our system could be extended to provide an upload option for custom data
sets.

5.2.3 Usage Scenario: Multi-City Comparisons

In order to provide an overview, a shared global perspective on the collected data, we
implemented multiple interactive visualizations of all networks, such as zoomable maps
or a small multiples view (see Figure 4.2-a and 4.2-b). Due to the same scales and axes,
small multiples are very efficient for giving a first quick overview and for comparison
purposes [46]. The individual vector maps with bike-sharing stations as dots serve as
indicators of the size, structure, and density of networks. Users can browse through these
networks and get further details on demand.

As described in Section 4.3.2, we implemented another page with multi-coordinated views
to explore network characteristics and to further leverage the global scale of the data.
Bike-sharing networks can be filtered and analyzed along multiple dimensions by using
the frequency charts. The lasso tool within the interactive map allows users to focus the
analysis on a certain geographic region, such as North America.

While operators of these systems have mostly a rather narrow and local view, our
interactive visualization system enables them to explore, compare, and learn from other
networks worldwide. Similarly, politicians and transportation authorities who are planning
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Figure 5.4: Choropleth map of the population density in Vienna. The colored circles
show live station fill levels on a weekday at 2pm.

a new bike-sharing system can get interesting insights from equal-sized cities, such as the
number of reachable stations in a 2 kilometer radius.

5.2.4 Usage Scenario: General Public

By bringing together distributed, heterogeneous data on a single platform we also simplify
the access for general public users. While this user group is often not interested in in-
depth analysis, it can benefit from a lightweight interface that leverages this rich data
source. Our implemented system includes various features that illustrate how typical
tasks that appeal to the general public can be supported, for example, maps showing
live station fill levels or a bike-sharing route planner for all our 468 networks, shown in
Figure 4.4 and Figure 5.5 respectively.

Within the route planner users can enter trip start- and endpoints and the system
automatically finds the nearest stations and the fastest route. More precisely, we
calculate two walking routes and one cycling route for each request that are combined

32



5.3. Quantitative Analysis of User Behavior

Figure 5.5: The route planner shows the fastest bike-sharing route between two endpoints
in Mexico City

together into one itinerary 2. First, we search for the fastest walking route between
the starting point and the nearest bike-sharing station. Second, we compute cycling
directions from this point to the closest station at the desired destination and third,
we calculate the walking route for the last stretch to the final destination. The result
is shown visually in the map view and in textual form in the left sidebar. Additional
tooltips in the interactive map show the current fill level and a historical profile for each
station, which we computed by averaging across the 17 months of data that we recorded.
This information can be used to roughly predict how the availability might look like at
a certain point in time, similar to Google’s ‘popular times’ feature [47]. While similar
planning tools exist for many systems [48, 49], our data allows a unified approach across
them.

5.3 Quantitative Analysis of User Behavior
Soon after finishing our first prototype we published our web-based visualization system
under the domain name http://bikesharingatlas.org with two main objectives: first, to
give our expert interviewees the chance to try the system extensively without our guidance
and second, to make it accessible to as many people as possible.

2 Walking and cycling routes are computed by using the Mapbox Directions service
(https://www.mapbox.com/directions/)
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In this context, we were especially interested in the following questions:

1. Which pages and features create more interest than others?

2. How long people usually spend there and what is the average bounce rate?

3. How do users interact with the system as a whole and with the introduced interaction
techniques in detail?

4. Are there any bugs or barriers that affect the user experience?

5. Where do people come from geographically and what language do they speak?

To answer these questions, we have integrated an analysis framework that contains the
tracking tools Google Analytics 3 and Mouseflow 4, and an online feedback form that
is displayed to users after two minutes of staying on the page (similar to Figure 5.7).
Google Analytics is one of the most widely used tracking tools for web projects. It
can be easily integrated into any website and it provides us with detailed information,
such as traffic sources, page popularity, which devices and browsers are used, and many
other statistics that help us to get more insights into the user behaviors on our platform.
Mouseflow is different in the way it processes and presents the tracking data. In addition
to classical statistical methods, Mouseflow creates recordings of each visit and we can
watch the users’ interactions as a video (screencast) afterwards. Furthermore, it generates
various heatmaps of all visited subpages and shows aggregated user interactions visually.
As shown in Figure 5.6, the tool creates an overlay on top of the web application that
displays, for example, the number of clicks on each element. This feature can help us to
evaluate which filters are getting applied, which networks are especially interesting or
how often do people click on certain menu items.

In the period September 2016 to March 2017, we recorded 741 different users and 5,449
individual page views in total. The average length of a session was roughly 5 minutes and
users visited 3.97 pages during one session on average. Most users came from Austria
(27.4%), followed by the United States (20.51%), Bosnia Herzegovina (8.64%), and the
United Kingdom (7.96%). The majority of people used Google Chrome (73.01%) and a
desktop computer (86.37%) to browse through the visualization system.

Unfortunately, the survey response rate for the feedback questions—shown to users within
a popup on the website—was very small. In general, the total number of users was also
rather small for this long time period. Thus, we put the primary focus of our evaluation
on the interviews.

Media coverage on futurezone [1] and in the uni:view magazine [2] validates the general
interest in the Bike Sharing Atlas.

3 https://analytics.google.com
4 https://mouseflow.com
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Figure 5.6: Heatmaps help to analyze user behaviors by overlaying click interactions

Figure 5.7: Screenshot of the feedback form that was integrated to collect opinions from
general public users
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CHAPTER 6
Discussion

6.1 Foundations & Process
The current methodological approach in visualization research often follows a design
study. Sedlmair et al. [50] defined it “as a project in which visualization researchers
analyze a specific real-world problem faced by domain experts, design a visualization
system that supports solving this problem, validate the design, and reflect about lessons
learned in order to refine visualization design guidelines”.

From this point of view, our approach is different, unconventional and more related to
the parallel multi-channel approach to visualization from Wood et al. [5]. Although,
our project was initiated in coordination with a bike-sharing operator (domain expert)
we did no face a particular problem. Instead, we were confronted with a versatile
dataset—produced by Vienna’s bike-sharing system over several years—and reports on
the challenges of setting up and operating a bike-sharing network.

As shown in the project timeline in Figure 6.1 we first implemented CitybikeVis, an
interactive visualization system for the exploration and analysis of Vienna’s bike-sharing
system. Multi-coordinated views provided different perspectives on the data, such as
station fill levels (see Figure 6.2), trips (see Figure 6.3) or damage reports. After another
interview with the bike-sharing operator and a demonstration of our tool, it became
more and more clear that this type of visualization can support and accelerate various
analysis processes but it will not reveal entirely new insights. The operator has a wealth
of experience and knows popular routes, station bottlenecks and other dynamics within
the local network very well. On the other hand, we could observe that the operator,
and published visualization tools for other cities take a rather narrow view that focuses
on a local network. These findings led to our idea of a global, data-driven approach to
understanding smart cities.
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Figure 6.1: Project timeline.

In the second phase of our project (Figure 6.1), beginning in December 2015, we started
recording live station fill levels of several hundred bike-sharing networks worldwide.
Within a short period of time, we accumulated several million data records that provided
the basis for the implementation of our visualization system, bikesharingatlas.org.

At the beginning, it was largely unclear how these aspects break down into novel
and actionable solutions in terms of data analysis and visualization tools. During an
iterative design process, several formative and summative assessments were conducted as
interviews and think-aloud studies. Our understanding about the potential and challenges
of our approach evolved and the feedback from the evaluations strongly shaped the final
implementation.

As described in the usage scenarios above, multiple benefits of a global view on smart
city data and urbanization emerged for different target groups. This flexibility and the
design of our general public system comes also with drawbacks. We deliberately excluded
more complex concepts and encodings, such as heatmaps or cluster views, that could
be of great interest to expert users. In order to provide these expert features, we would
need an advanced mode or a separate user interface.
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Figure 6.2: CitybikeVis: Analyzing station fill levels of Vienna’s bike-sharing system. (a)
The control panel allows users to filter data, to change the visual encoding and to select
an aggregation mode. (b) The heatmap shows all stations and their aggregated fill levels
over a certain period of time. Each line represents one station and each column displays
the station state, either for a day, week, or month. The cells are color-coded based on
the selected variable. In this screenshot we get an high-level overview of all stations in
Vienna on a day-level. The matrix is sortable in both dimensions which enables users to
identify station bottlenecks and other unusual behavior. (c) The sidebar shows another
view on the station states or more details if the user selects a specific cell.

We have also implemented a prototype of such an expert tool that allows users more
detailed multi-city comparisons. Figure 6.4 and 6.5 show screenshots of the window-based
visualization system that is built on the Bike Sharing Atlas. Instead of several sub-pages
that facilitate diverse perspectives on the bike-sharing data, the core of our expert tool is
a flexible drawing tool. Users can select a certain city and available views are displayed
accordingly in the left sidebar. These views can be positioned freely on the drawing area
and thus enable users to compose individual dashboards with multiple visualizations.
Identical station IDs in different views are automatically detected and visually emphasized
if a user hovers over an element. Currently, it is an early prototype but in the future, it
can be further extended to serve as a framework for visualizing data from other smart
city sensors.
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Figure 6.3: Screenshot of the tool CitybikeVis focusing on completed trips within Vienna’s
bike-sharing network. Users can filter the data, show additional overlays, such as cycling
paths, and explore popular routes and stations interactively.

6.2 Lessons Learned
In the course of our two-year long project, we ran through multiple development iterations
and evaluations with potential target groups. In this section, we briefly reflect on valuable
lessons learned from collaborations and from implementing our platform.

6.2.1 Open Data Access
Access restrictions still represent the greatest barrier for leveraging smart city data.
While there emerged numerous open data initiatives and online libraries in recent years
we realized multiple times how difficult it is to get global data that is similarly structured.
Datasets, such as demographic statistics on a city level, are often provided only for specific
countries or larger cities. Bike-sharing networks are generally publishing at least their
station fill levels but especially operators in Asia restrict access to this information at the
moment. Unfortunately, due to the rapidly growing number of bike-sharing networks in
Asia, this influenced also the results of this thesis. Similarly, weather services around the
world provide easy access to live weather records but the utilization of historical data is
restricted behind paywalls. These access limitations are often justified with the argument
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to protect citizens’ rights to privacy. For example, if we have detailed information about
completed bike-sharing trips in a small town we would be able to track specific people
and reconstruct their movements. Although this personal information must be protected
unconditionally, we observed in the course of our project that the public access to global
data is often hampered by national barriers or inconsistent data formats. This thesis
and other data-driven smart city projects demonstrate the potential and the benefits of
making this data accessible and understandable for various target groups and we hope
that it will contribute to the growing open data movement.

6.2.2 Custom Visualizations
In the course of the development of multiple prototypes, we had to decide which technolo-
gies are most appropriate and effective for the given requirements. We quickly agreed to
build an online visualization system built on web technologies. However, the question
raised if we can implement the whole system within the Tableau 1 environment or if
we should use D3 2 or other visualization libraries. Tableau is a visualization software
that helps users to explore and analyze relational data sets. Interactive dashboards with
multiple views and filters can be plugged together and integrated into any website. We
have used theses features in various project stages to create and evaluate medium-fidelity
prototypes. The assessment of advantages and disadvantages in relation to the JavaScript
library D3 quickly revealed that we would lose a lot of flexibility if we solely used Tableau.
It is limited to the provided chart templates and in particular, the implementation of
custom interaction techniques (e.g. drawing mechanism for the fill level analyzer) would
not be possible. The Bike Sharing Atlas was therefore exclusively built with D3 and on
the basis of JavaScript.

6.2.3 Domain Experts
Another lesson we have learned is the importance of domain experts for these types of
projects. With their specific domain knowledge and their feedback on the prototypes,
they are a decisive factor towards the success of a visualization project. In this context,
engagement is another crucial factor. First, we cannot expect domain experts delivering
us with well-defined problems that are simultaneously interesting visualization research
questions, and second—as Sedlmair et al. [50] mentioned as one common pitfall for design
studies—there is often not enough time available for activities such as problem analysis,
design discussions or evaluations. Although all of our interviewees saw the potential of our
system, most of them did not see an immediate need for their daily work or their current
projects and, thus, did not accompany our project with a significant time commitment.
Instead, they expected from us to further develop the system and to provide them with
valuable insights.

1 https://tableau.com
2 https://d3js.org
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Figure 6.4: Screenshot of the tool Bike Sharing Expert showing an overview of all available
bike-sharing networks. Users can switch between different perspectives and the frequency
charts in the right sidebar can be used to narrow down the search for interesting cities.

Figure 6.5: Comparison of the bike-sharing networks in Milan and Vienna. Users can
select a city in the left sidebar and available views are automatically displayed. These
views (e.g. elevation profile) can be added at any position on the drawing area. This
flexible, window-based interface allows users to quickly build dashboards and to compare
multiple cities.42



CHAPTER 7
Conclusions and Future Work

In this work we discuss a data-driven and visual approach to understanding and lever-
aging smart city data. Through our iterative design process, we found evidence that
such an approach can benefit different target groups. The fill level analyzer with its
multi-coordinated views, for instance, provides a new way to explore and communicate
commuting behaviors in 45 countries. The combination with other data sources can
help, for instance, urban sociology researchers to analyze effects of residential segregation.
Elevation profiles support bike-sharing operators in identifying bottlenecks with stations
at higher altitudes. An integrated route planner and live station fill levels offer a benefit
for general public users.

While our system is primarily built around global bike-sharing data we believe that the
proposed visual approach is relevant for other smart city sensors too. Observed more
closely, we use the data not only to analyze cycling behavior or to build a route planner
but also as a way to understand high-level city dynamics more generally. The concept of
using sensors for monitoring tasks for which they were not initially designed is called
opportunistic sensing (or citizen sensing) [51]. Massive amounts of data, produced by car
sharing services, taxis, public transport systems, smart meters, or other sensors provide
abstractly similar challenges and opportunities. By recording them over a long time
period and by making them accessible and visually explorable it could open up new
possibilities in understanding and improving urban environments.

So far, we have only scratched the surface and there are many more usage scenarios
that could be explored in this context. But also the ones that we have identified would
benefit from being complemented, for instance, by further design studies and in-depth
collaboration with specific user groups [50]. Our work of gathering and making the data
available now provide the first steps towards such future endeavors. Beyond that, we also
hope that our work will inspire researchers and designers of other urban data solutions.

43





List of Figures

3.1 The 15 largest bike-sharing networks in our database . . . . . . . . . . . . 13
3.2 Histogram showing the distribution of number of stations per network . . 13
3.3 Number of stations vs. average nearest neighbor distance . . . . . . . . . 14
3.4 Histogram showing the distribution of the average nearest neighbor distance

between bike-sharing stations . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Histogram showing the distribution of the average number of stations within

a 2 km radius reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Histogram of the elevation difference between the highest and lowest station

in each network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 Histogram showing the distribution of population throughout the bike-sharing

cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Screenshot of the homepage of bikesharingatlas.org . . . . . . . . . . . . . 18
4.2 Screenshots of different overview components of the tool . . . . . . . . . . 19
4.3 Overview and detail components. . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Current overview of station fill levels in Paris, France. Tooltips help to predict

the availability of bikes and empty docks at certain times during the day. . 21
4.5 The fill level analyzer view exposes bike-sharing commuting behaviors in

London, U.K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Frequency charts linked with a map view allow users to interactively explore

and compare network characteristics . . . . . . . . . . . . . . . . . . . . . 23

5.1 Station fill levels visualized as multi-series line charts serve as indicators of
commuting behaviors worldwide. Small thumbnails in the middle column
of each view show how patterns differ during the week from those on the
weekend. Users can click on one of the thumbnails to show it in the main
view enlarged. Stations can be selected either in the line chart or in the map
view and are highlighted respectively. . . . . . . . . . . . . . . . . . . . . 29

5.2 Analyzing station fill levels of Vienna’s bike-sharing network . . . . . . . 30
5.3 Time series showing the network activity (gray area) and the temperature

(line) in Vienna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Choropleth map of the population density in Vienna. The colored circles show

live station fill levels on a weekday at 2pm. . . . . . . . . . . . . . . . . . 32

45



5.5 The route planner shows the fastest bike-sharing route between two endpoints
in Mexico City . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.6 Heatmaps help to analyze user behaviors by overlaying click interactions . 35
5.7 Screenshot of the feedback form that was integrated to collect opinions from

general public users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Project timeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 CitybikeVis: Analyzing station fill levels of Vienna’s bike-sharing network 39
6.3 CitybikeVis: Analyzing completed trips within Vienna’s bike-sharing network 40
6.4 Bike Sharing Expert: Overview of all networks . . . . . . . . . . . . . . . 42
6.5 Bike Sharing Expert: Window-based visualization helps to analyze and com-

pare the bike-sharing networks in Milan and Vienna . . . . . . . . . . . . 42

46



List of Tables

3.1 Bike-sharing systems that share detailed information about completed trips 10
3.2 Excerpt of station timestamps that are recorded every 15 min . . . . . . . 10
3.3 Ten networks with the largest elevation drop between the highest and lowest

station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

47





Bibliography

[1] D. Kotrba, “Bike Sharing Atlas zeigt, wo die Mieträder ste-
hen,” April 29, 2017. [Online]. Available: https://futurezone.at/science/
bike-sharing-atlas-zeigt-wo-die-mietraeder-stehen/260.959.978

[2] T. Dirtl, “Mit dem Radl von Stadt zu Stadt,” April 18, 2017. [Online]. Avail-
able: http://medienportal.univie.ac.at/uniview/forschung/detailansicht/artikel/
mit-dem-radl-von-stadt-zu-stadt/

[3] P. DeMaio and J. Gifford, “Will smart bikes succeed as public transportation in the
United States?” Journal of Public Transportation, vol. 7, no. 2, pp. 1–15, 2004.

[4] J. Froehlich, J. Neumann, and N. Oliver, “Sensing and predicting the pulse of the
city through shared bicycling,” in IJCAI, vol. 9, 2009, pp. 1420–1426.

[5] J. Wood, R. Beecham, and J. Dykes, “Moving beyond sequential design: Reflections
on a rich multi-channel approach to data visualization,” IEEE Transactions on
Visualization and Computer Graphics, vol. 20, no. 12, pp. 2171–2180, 2014.

[6] J. C. García-Palomares, J. Gutiérrez, and M. Latorre, “Optimizing the location of
stations in bike-sharing programs: a GIS approach,” Applied Geography, vol. 35,
no. 1, pp. 235–246, 2012.

[7] L. M. Martinez, L. Caetano, T. Eiró, and F. Cruz, “An optimisation algorithm to
establish the location of stations of a mixed fleet biking system: An application to
the city of Lisbon,” Procedia - Social and Behavioral Sciences, vol. 54, pp. 513–524,
2012.

[8] T. Raviv, M. Tzur, and I. A. Forma, “Static repositioning in a bike-sharing
system: models and solution approaches,” EURO Journal on Transportation
and Logistics, vol. 2, no. 3, pp. 187–229, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s13676-012-0017-6

[9] M. Rainer-Harbach, P. Papazek, B. Hu, and G. R. Raidl, “Balancing bicycle sharing
systems: A variable neighborhood search approach,” in European Conference on
Evolutionary Computation in Combinatorial Optimization (EvoCOP). Springer,
2013, pp. 121–132.

49

https://futurezone.at/science/bike-sharing-atlas-zeigt-wo-die-mietraeder-stehen/260.959.978
https://futurezone.at/science/bike-sharing-atlas-zeigt-wo-die-mietraeder-stehen/260.959.978
http://medienportal.univie.ac.at/uniview/forschung/detailansicht/artikel/mit-dem-radl-von-stadt-zu-stadt/
http://medienportal.univie.ac.at/uniview/forschung/detailansicht/artikel/mit-dem-radl-von-stadt-zu-stadt/
http://dx.doi.org/10.1007/s13676-012-0017-6


[10] C. Kloimüllner, P. Papazek, B. Hu, and G. R. Raidl, “Balancing bicycle sharing
systems: an approach for the dynamic case,” in European Conference on Evolutionary
Computation in Combinatorial Optimization, 2014, pp. 73–84.

[11] J.-R. Lin and T.-H. Yang, “Strategic design of public bicycle sharing systems with
service level constraints,” Transportation research part E: logistics and transportation
review, vol. 47, no. 2, pp. 284–294, 2011.

[12] M. C. Guenther and J. T. Bradley, “Journey data based arrival forecasting for bicycle
hire schemes,” in International Conference on Analytical and Stochastic Modeling
Techniques and Applications. Springer, 2013, pp. 214–231.

[13] P. Borgnat, P. Abry, P. Flandrin, C. Robardet, J.-B. Rouquier, and E. Fleury, “Shared
bicycles in a city: A signal processing and data analysis perspective,” Advances in
Complex Systems, vol. 14, no. 03, pp. 415–438, 2011.

[14] T. Munzner, Visualization Analysis and Design. CRC Press, 2014.

[15] G. Andrienko, N. Andrienko, P. Bak, D. Keim, and S. Wrobel, Visual analytics of
movement. Springer Science & Business Media, 2013.

[16] R. Beecham, J. Wood, and A. Bowerman, “Studying commuting behaviours using
collaborative visual analytics,” Computers, Environment and Urban Systems, vol. 47,
pp. 5–15, September 2014.

[17] G. N. Oliveira, J. L. Sotomayor, R. P. Torchelsen, C. T. Silva, and J. L. Comba,
“Visual analysis of bike-sharing systems,” Computers & Graphics, vol. 60, pp. 119–129,
2016.

[18] J. Corcoran, T. Li, D. Rohde, E. Charles-Edwards, and D. Mateo-Babiano, “Spatio-
temporal patterns of a public bicycle sharing program: the effect of weather and
calendar events,” Journal of Transport Geography, vol. 41, pp. 292–305, 2014.

[19] B. Wellington, “Mapping Citi Bike’s riders, not just rides,” 2014, last accessed
April 26, 2017. [Online]. Available: http://iquantny.tumblr.com/post/81465368612/
mapping-citi-bikes-riders-not-just-rides

[20] H. R. Alberts, “How New Yorkers and tourists use Citi Bike on two nice days,”
2014, last accessed April 26, 2017. [Online]. Available: http://ny.curbed.com/2014/
3/31/10122748/how-new-yorkers-and-tourists-use-citi-bike-on-two-nice-days

[21] A. Woodruff, “Bostonography: Hubway trip explorer,” 2012, last accessed April 26,
2017. [Online]. Available: http://bostonography.com/hubwaymap/

[22] V. Chiraphadhanakul, “Bay area bike share: Data challenge,” 2014, last accessed
April 26, 2017. [Online]. Available: http://babs.virot.me/

50

http://iquantny.tumblr.com/post/81465368612/mapping-citi-bikes-riders-not-just-rides
http://iquantny.tumblr.com/post/81465368612/mapping-citi-bikes-riders-not-just-rides
http://ny.curbed.com/2014/3/31/10122748/how-new-yorkers-and-tourists-use-citi-bike-on-two-nice-days
http://ny.curbed.com/2014/3/31/10122748/how-new-yorkers-and-tourists-use-citi-bike-on-two-nice-days
http://bostonography.com/hubwaymap/
http://babs.virot.me/


[23] S. Jacobsen, “Who’s faster? Divvy riders vs transit riders,” 2015, last accessed
April 26, 2017. [Online]. Available: http://transitized.com/divvy-vs-transit/

[24] M. Z. Austwick, O. O’Brien, E. Strano, and M. Viana, “The structure of spatial
networks and communities in bicycle sharing systems,” PLoS ONE, vol. 8, no. 9, p.
e74685, 2013.

[25] A. Bargar, A. Gupta, S. Gupta, and D. Ma, “Interactive visual analytics for multi-
city bikeshare data analysis,” in 3rd International SIGKDD Workshop on Urban
Computing (UrbComp), 2014, short paper no. 5.

[26] T. Nagel, C. Pietsch, and M. Dörk, “Staged analysis: From evocative to comparative
visualizations of urban mobility,” in Proceedings of the IEEE VIS Arts Program,
VISAP, 2016, pp. 23–30.

[27] O. O’Brien, “Bike share map,” September 2017, last accessed April 26, 2017.
[Online]. Available: http://bikes.oobrien.com

[28] R. Meddin and P. DeMaio, “The bike-sharing world map,” September 2017, last
accessed April 26, 2017. [Online]. Available: http://bikesharingmap.com

[29] O. O’Brien, J. Cheshire, and M. Batty, “Mining bicycle sharing data for generating
insights into sustainable transport systems,” Journal of Transport Geography, vol. 34,
no. 262–273, 2014.

[30] T. von Landesberger, F. Brodkorb, P. Roskosch, N. Andrienko, G. Andrienko, and
A. Kerren, “Mobilitygraphs: Visual analysis of mass mobility dynamics via spatio-
temporal graphs and clustering,” IEEE Transactions on Visualization and Computer
Graphics, vol. 22, no. 1, pp. 11–20, 2016.

[31] L. Yu, W. Wu, L. Xiaohui, L. Guangxia, W. Siong Ng, S.-K. Ng, Z. Huang, A. Arunan,
and H. M. Watt, “iVizTRANS: Interactive visual learning for home and work place
detection from massive public transportation data,” in IEEE Conference on Visual
Analytics Science and Technology (VAST), 2015, pp. 49–56.

[32] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva, “Visual exploration
of big spatio-temporal urban data: A study of New York City taxi trips,” IEEE
Transactions on Visualization and Computer Graphics, vol. 19, no. 12, pp. 2149–2158,
2013.

[33] F. Miranda, H. Doraiswamy, M. Lage, K. Zhao, B. Gonçalves, L. Wilson, M. Hsieh,
and C. T. Silva, “Urban pulse: Capturing the rhythm of cities,” IEEE Transactions
on Visualization and Computer Graphics, vol. 23, no. 1, pp. 791–800, 2017.

[34] CityBikes API, 2017, last accessed April 26, 2017. [Online]. Available:
https://api.citybik.es

51

http://transitized.com/divvy-vs-transit/
http://bikes.oobrien.com
http://bikesharingmap.com
https://api.citybik.es


[35] C. M. de Chardon and G. Caruso, “Estimating bike-share trips using station level
data,” Transportation Research Part B: Methodological, vol. 78, pp. 260–279, 2015.

[36] J. Boy, L. Eveillard, F. Detienne, and J.-D. Fekete, “Suggested interactivity: Seek-
ing perceived affordances for information visualization,” IEEE Transactions on
Visualization and Computer Graphics, vol. 22, no. 1, pp. 639–648, 2016.

[37] B. Shneiderman, “The eyes have it: A task by data type taxonomy for information
visualizations,” in IEEE Symposium on Visual Languages, 1996, pp. 336–343.

[38] J. Heer and B. Shneiderman, “Interactive dynamics for visual analysis,” Queue,
vol. 10, no. 2, pp. 1–26, 2012.

[39] C. Ware, Visual thinking For design. Morgan Kaufmann, 2008.

[40] J. Boy, R. A. Rensink, E. Bertini, and J.-D. Fekete, “A principled way of assessing
visualization literacy,” IEEE Transactions on Visualization and Computer Graphics,
vol. 20, no. 12, pp. 1963–1972, 2014.

[41] C. Lewis and J. Rieman, Task-centered User Interface Design: A Practical In-
troduction. University of Colorado, Boulder, Department of Computer Science,
1993.

[42] S. Jones, “Working 9 to 8: Spain seeks to shorten 11-
hour working day,” December 2016, last accessed April 26,
2017. [Online]. Available: https://www.theguardian.com/world/2016/dec/13/
spain-leaves-franco-in-past-as-it-seeks-to-move-clocks-back-an-hour

[43] M. S. Smith and G. Kauermann, “Bicycle commuting in Melbourne during the
2000s energy crisis: A semiparametric analysis of intraday volumes,” Transportation
Research Part B: Methodological, vol. 45, no. 10, pp. 1846 – 1862, 2011.

[44] K. Gebhart and R. B. Noland, “The impact of weather conditions on bikeshare trips
in Washington, DC,” Transportation, vol. 41, no. 6, pp. 1205–1225, 2014.

[45] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interactive visual spec-
ification of data transformation scripts,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 2011, pp. 3363–3372.

[46] E. Tufte, Envisioning Information. Cheshire, CT, USA: Graphics Press, 1990.

[47] Google, “Popular times,” 2017, last accessed April 26, 2017. [Online]. Available:
https://goo.gl/F7D0c9

[48] Citymapper, “The ultimate transport app,” 2017, last accessed April 26, 2017.
[Online]. Available: https://content.citymapper.com

[49] Mapbox, “Plan a ride with surface, directions, and turf.js,” 2017, last accessed April
26, 2017. [Online]. Available: https://www.mapbox.com/bites/00094/

52

https://www.theguardian.com/world/2016/dec/13/spain-leaves-franco-in-past-as-it-seeks-to-move-clocks-back-an-hour
https://www.theguardian.com/world/2016/dec/13/spain-leaves-franco-in-past-as-it-seeks-to-move-clocks-back-an-hour
https://goo.gl/F7D0c9
https://content.citymapper.com
https://www.mapbox.com/bites/00094/


[50] M. Sedlmair, M. Meyer, and T. Munzner, “Design study methodology: Reflections
from the trenches and the stacks,” IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 12, pp. 2431–2440, 2012.

[51] D. Havlik, S. Schade, Z. A. Sabeur, P. Mazzetti, K. Watson, A. J. Berre, and J. L.
Mon, “From sensor to observation web with environmental enablers in the future
internet,” Sensors, vol. 11, no. 4, pp. 3874–3907, 2011.

53


	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Methodological Approach
	Contributions

	Background and Related Work
	Bike Sharing
	Related Work

	Data Acquisition and Preprocessing
	Bike Sharing Data
	External Data Sources
	Preprocessing
	Network Characteristics
	Statistics

	Bike Sharing Atlas
	System Overview
	Implementation
	Visualization and Interaction Design Choices

	Evaluation
	Expert Interviews
	Usage Scenarios
	Quantitative Analysis of User Behavior

	Discussion
	Foundations & Process
	Lessons Learned

	Conclusions and Future Work
	List of Figures
	List of Tables
	Bibliography

